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class HyperMixerTokenMixing(nn.Module):
def __init__(self , d, d_ff):

self.hypernet_in = MLP([d, d, d_ff])
self.hypernet_out = MLP([d, d, d_ff])
self.pe = PositionalEncoder(d)
self.ln = LayerNorm(d, dim=-1)

def forward(self , queries , keys , values):
# queries : [B, M, d]
# keys / values : [B, N, d]

# [B, N, d_ff]
W1 = self.hypernet_in(self.pe(keys))

# [B, M, d_ff]
W2 = self.hypernet_out(self.pe(queries))

# TM-MLP(x) = W_2 ( act ( W_1^T x) )
# [B, d, N] -> [B, d, d_ff] -> [B, d, M]
token_mixing_mlp = compose_MLP(W1, W2, act)

values = values.transpose(1, 2) # [B, d, N]

output = token_mixing_mlp(values) # [B, d, M]

output = output.transpose(1,2) # [B, M, d]
return self.ln(output)

1. Summary

• Conceptually simpler models like MLPs promise to
bemore sustainable because they are easier to train
and require less data.

• WeproposeHyperMixer, anMLP-basedneural archi-
tecture with inductive biases suited for natural lan-
guage processing.

• HyperMixer is substantially better at text classifica-
tion tasks than alternative MLP-based models.

• HyperMixer is less costly than Transformers in terms
of processing time, training data, and hyperparam-
eter tuning.

2. Motivation
• Simpler models promise to be less costly⇒MLPs!

• Existing models lack important inductive biases of Transform-
ers: variable binding, variable length and pos. invariance.

Variable binding Pos. invariance Variable-length

Transformer [7] 3 3 3

MLP-based models
MLPMixer [6] 3 7 7

gMLP [4] 3 7 7

HyperMixer (ours) 3 3 3

3. Model
See figure and pseudo-code at the top!

• General Transformer-like architecture: apply token mixing and
feature mixing (FF-MLP) per token⇒ variable binding

•MLPMixer: uses a fixed token mixing MLP to mix positions ⇒
fixed length and not position invariant

• HyperMixer: generate token mixing MLP with hypernet-
works [2]⇒ variable length, position invariance!

Code:

4. Experiments

Results:
1. HyperMixer performs better at text classification
tasks than MLPMixer and similar MLP-based alter-
natives.

2. HyperMixer is less costly than Transformers in terms
of processing time, training data, and hyperparam-
eter tuning, while achieving competitive results.

Scope of results:
• Low-resource scenario: relatively small models, no
pretraining, medium-size datasets

•We only cover text classification datasets (no text
generation) mostly from the GLUE benchmark

4.1. Comparison to other models

Test set results on 5 tasks from the GLUE benchmark [8]:
Model MNLI SNLI QQP QNLI SST # Params
FNet [9] 59.8 75.3 78.4 59.6 80.0 9.5 M

Lin. Transformer [3] 66.9 83.0 82.3 61.7 80.8 11 M
Transformer [7] 65.8 80.7 82.4 73.2 79.4 11 M
MLPMixer [6] 62.9 80.1 83.5 70.5 81.2 11 M
gMLP [4] 61.2 80.9 82.5 60.2 79.5 11 M

HyperMixer (ours) 66.1 81.7 84.1 77.1 81.4 11 M
underlined: best MLP-based model. bold: best model overall.

4.2. Cost comparison with Transformers

Cost of an AI result according to Schwartz et al. [5]:

Cost(R) ∝ E ·D ·H
E : processing time;D : dataset size;H : hyperparameters

E: HyperMixer has complexity ofO(N) vs TransformersO(N2)
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D: HyperMixer does better in the low-resource scenario (graph
shows HyperMixer’s relative improvement over Transformers as a
function of training data size)
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H: HyperMixer does better with small hyperparameter tun-
ing (graph shows HyperMixer’s expected relative improvement[1]
over Transformers as function of #trials in random hyperparame-
ter search)
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