Learning to Abstract with NVIB

Melika Behjati*, Fabio Fehr*
James Henderson

Overview

- **Problem:** Language models' abstraction is defined and restricted by their tokenization. Training models for each tokenization is costly.
- Why: Different levels of abstraction are important for different linguistic tasks and applications.
- How: Stacked NVIB layers learn to compress to different levels of abstraction at different layers within the same model.
- **Results:** NVIB: discovers words groupings; is more robust to noise; and is more linguistically informed than standard Transformers.

Model

Nonparametric Variational Information Bottleneck (**NVIB**) is an information theoretic regulariser for attention-based latent representations. We apply NVIB to stacked self-attention layers and train it on a character-level denoising reconstruction objective.

Nonparametric Variational Information Bottleneck

discovers words with more linguistically informed and robust representations.

Our Demo!

Attention Map Visualisations

Left: Standard self-attention. Right: With NVIB.

Linguistic Probing

Relative performance of NVIB over Transformers for a subset of SentEval tasks.

Robustness Analysis

Relative performance under input perturbations.

