Why do Transformers work so well?

Fabio James Fehr

18 March 2024

Outline

Personal Background

A Brief History of NLP and Deep Learning

The Attention Mechanism

My PhD Research

Personal Background

A Brief History of NLP and Deep Learning

The Attention Mechanism

My PhD Research

UCT Seminar

Who is this guy?

UCT

• **BBusSci:** Analytics (2015-2018) Thesis: Natural Language Processing - Stefan Britz

Personal Background

Who is this guy?

UCT

- **BBusSci:** Analytics (2015-2018) Thesis: Natural Language Processing - Stefan Britz
- MSc: Statistics (2019-2020) Thesis: Nonparametric methods vs deep learning - Allan Clark

Personal Background

Who is this guy?

UCT

- **BBusSci:** Analytics (2015-2018) Thesis: Natural Language Processing - Stefan Britz
- MSc: Statistics (2019-2020) Thesis: Nonparametric methods vs deep learning - Allan Clark
- EPFL & Idiap Switzerland
 - PhD Electrical Engineering (2021-2025)
 Nonparametric methods for NLP

Personal Background

Personal Background

A Brief History of NLP and Deep Learning

The Attention Mechanism

My PhD Research

UCT Seminar

The "AI Revolution"

- ChatGPT (Text)
- MidJourney (Images)
- AlphaGo (Games)
- Siri (Audio)
- etc ...

The "AI Revolution"

- ChatGPT (Text)
- MidJourney (Images)
- AlphaGo (Games)
- Siri (Audio)
- etc ...

The "AI Revolution"

- ChatGPT (Text)
- MidJourney (Images)
- AlphaGo (Games)
- Siri (Audio)
- etc ...

What is the secret sauce?

The "AI Revolution"

- ChatGPT (Text)
- MidJourney (Images)
- AlphaGo (Games)
- Siri (Audio)
- etc ...

What is the secret sauce?

- The attention mechanism (NLP)
- Large-scale pretraining (Deep Learning)

Problem: Machine Translation

Given text examples of French and English language pairs, translate the following:

Tokenization

• Break into smaller units (words)

Je suis un chat. I am a cat.

Tokenization

- Break into smaller units (words)
- Build vocabulary

Je suis un chat.				I	am	а	cat.
	$ \rightarrow $			<u> </u>	ب ر		$\overline{}$
x_1	x_2	x_3	x_4	y_1	y_2	y_3	y_4

Tokenization

- Break into smaller units (words)
- Build vocabulary

Vectorisation

• Make into numbers (0 or 1)

Tokenization

- Break into smaller units (words)
- Build vocabulary

Vectorisation

• Make into numbers (0 or 1)

Classification

• Multinomial logistic regression (per word) or Naive Bayes

Tokenization

- Break into smaller units (words)
- Build vocabulary

Vectorisation

• Make into numbers (0 or 1) **Semantics?**

Classification

 Multinomial logistic regression (per word) or Naive Bayes
Simplistic? Independence?

Models are too simple?

• Neural networks

Models are too simple?

• Neural networks

Contextualised representations?

• Word2Vec [Mikolov et al., 2013]

Models are too simple?

• Neural networks

Contextualised representations?

• Word2Vec [Mikolov et al., 2013]

Models assume independence?

• Recurrent Neural Networks

Models are too simple?

• Neural networks

Contextualised representations?

• Word2Vec [Mikolov et al., 2013]

Models assume independence?

Recurrent Neural Networks
Long term dependencies?
Recurrence on GPUs?
Vanishing gradients?

Long term dependencies?

• Attention for translation [Bahdanau et al., 2014]

Figure: Bidirectional LSTM with attention

Long term dependencies?

• Attention for translation [Bahdanau et al., 2014]

Recurrence?

• Transformers - only attention [Vaswani et al., 2017]

Figure: Transformer

Long term dependencies?

• Attention for translation [Bahdanau et al., 2014]

Recurrence?

• Transformers - only attention [Vaswani et al., 2017]

Scale

• The bitter lesson [Sutton, 2019]

noosoo you can't just scale up pure connectionist models on Internet data without inductive biases and modularization and expect the to learn relatively knowledge and grammar from form, or arithmetic and logical reasoning and causal motion of the state of the state of the state of the communication with intern and scale and the state of the communication with intern and scale and the state of the state state of the state of the state of the state of the state with state internet and scale and the state of the state state of the state of the state of the state of the state o

haha gpus go bitterrr

Long term dependencies?

• Attention for translation [Bahdanau et al., 2014]

Recurrence?

• Transformers - only attention [Vaswani et al., 2017]

Scale

• The bitter lesson [Sutton, 2019]

Pretraining

• "Large" foundation models (2017-2021)

Figure: Pretrained models [Han et al., 2021]

Long term dependencies?

• Attention for translation [Bahdanau et al., 2014]

Recurrence?

• Transformers - only attention [Vaswani et al., 2017]

Scale

• The bitter lesson [Sutton, 2019]

Pretraining

- "Large" foundation models (2017-2021)
- Large Language Models (2023)

The secret sauce:

- 1. The attention mechanism
- 2. Scaling data and model size

The secret sauce:

- 1. The attention mechanism
- 2. Scaling data and model size

[II m'a entarté = ???]French English

The secret sauce:

- 1. The attention mechanism
- 2. Scaling data and model size

$$\underbrace{\text{II m'a entart}\acute{e}}_{French} = \underbrace{???}_{English}$$

Figure: Google translate

The secret sauce:

- 1. The attention mechanism
- 2. Scaling data and model size

$$\underbrace{\text{II m'a entarté}}_{French} = \underbrace{???}_{English}$$

English (UK) 🗸	Glossary
He put me on the spot	t
Alternatives:	
He's got me all tarted up	
He's got me in trouble	
He's got me in a tizzy	

Figure: DeepL

The secret sauce:

- 1. The attention mechanism
- 2. Scaling data and model size

$$\underbrace{\text{II m'a entart}\acute{e}}_{French} = \underbrace{???}_{English}$$

ChatGPT

"Il m'a entarté" is a French expression. It translates to "He pied me" or "He threw a pie at me" in English. The word "entarté" comes from the verb "tartiner," which means "to spread" or "to smear," but in this context, it refers to the act of throwing a pie at someone's face as a form of prank or ridicule.

4) 🗂 🖓

Figure: ChatGPT

UCT Seminar

The secret sauce:

- 1. The attention mechanism
- 2. Scaling data and model size

$$\underbrace{\mathsf{II m'a entart\acute{e}}}_{French} = \underbrace{???}_{English}$$

Personal Background

A Brief History of NLP and Deep Learning

The Attention Mechanism

My PhD Research

UCT Seminar

Data

• N observations, P dimensional

UCT Seminar

Data

- N observations, P dimensional
- No particular order

Data

- N observations, P dimensional
- No particular order
- Common across domains
Data

- N observations, P dimensional
- No particular order
- Common across domains

• M observations, P dimensional

Data

 $oldsymbol{U}~\in \mathbb{R}^{M imes P}$

- N observations, P dimensional
- No particular order
- Common across domains

- M observations, P dimensional
- No particular order

Data

- No particular order
- Common across domains

- M observations, P dimensional
- No particular order
- $oldsymbol{U}=oldsymbol{Z}$ or $oldsymbol{U}
 eqoldsymbol{Z}$

UCT Seminar

How do we get Z and U to interact?

How do we get Z and U to interact?

 $\boldsymbol{Z}\boldsymbol{Z}^{\boldsymbol{T}} \in \mathbb{R}^{N imes N}_+$

• U = Z: Variance(Z, Z)

• $U \neq Z$: Covariance(U, Z)

How do we project this interaction forward?

$$\boldsymbol{Z}\boldsymbol{Z}^{\boldsymbol{T}} \! \in \! \mathbb{R}^{N imes N}_{+}$$

$$\boldsymbol{U}\!\boldsymbol{Z}^{\boldsymbol{T}}\!\in\!\mathbb{R}^{M imes N}$$

• U = Z: Variance(Z, Z)

• $U \neq Z$: Covariance(U, Z)

How do we project this interaction forward?

 $ZZ^TZ \in \mathbb{R}^{N imes P}$

- U = Z: Variance(Z, Z)
- ${}^{\bullet}$ Project by Z

- $U \neq Z$: Covariance(U, Z)
- Project by ${old Z}$

UCT Seminar

• Strictly positive multiplications?

- Strictly positive multiplications?
- Normalisations and scaling?

 $ZZ^TZ \in \mathbb{R}^{N imes P}$

- Strictly positive multiplications?
- Normalisations and scaling?

• Single interaction value?

 $ZZ^TZ \in \mathbb{R}^{N imes P}$

 $oldsymbol{U}oldsymbol{Z}^Toldsymbol{Z}\in\mathbb{R}^{M imes P}$

- Strictly positive multiplications?
- Normalisations and scaling?

- Single interaction value?
- Quadratic?

Figure: Self attention

Figure: Cross attention

•
$$W^{Q}$$
, W^{K} , $W^{V} \in \mathbb{R}^{P imes d}$

UCT Seminar

Cross attention

 $oldsymbol{Q}oldsymbol{K}^T \in \mathbb{R}^{M imes N}$

- Cross attention
- Scaling

 $\in \mathbb{R}^{M imes N}$

- Cross attention
- Scaling
- Normalisation

- Cross attention
- Scaling
- Normalisation
- Projection

Advantages:

- Simple layer
- No particular order
- Unbounded inputs
- Probabilistic interpretation

Advantages:

- Simple layer
- No particular order
- Unbounded inputs
- Probabilistic interpretation

Problems solved:

• Strictly positive multiplications? \checkmark

Advantages:

- Simple layer
- No particular order
- Unbounded inputs
- Probabilistic interpretation

Problems solved:

- Strictly positive multiplications? \checkmark
- Normalisations and scaling? \checkmark

Advantages:

- Simple layer
- No particular order
- Unbounded inputs
- Probabilistic interpretation

Problems solved:

- Strictly positive multiplications? \checkmark
- Normalisations and scaling? \checkmark
- Single interaction value? \checkmark

Advantages:

- Simple layer
- No particular order
- Unbounded inputs
- Probabilistic interpretation

Problems solved:

- Strictly positive multiplications? \checkmark
- Normalisations and scaling? \checkmark
- Single interaction value? \checkmark
- Quadratic? 🗡

Personal Background

A Brief History of NLP and Deep Learning

The Attention Mechanism

Intuition

Attention mechanism:

- No particular order
- Unbounded inputs
- Probabilistic interpretation

Intuition

Attention mechanism:

- No particular order
- Unbounded inputs
- Probabilistic interpretation

Nonparametric distribitions

- Exchangable set
- Theoretically infinite
- Mixture of distributions

Regularisation:

- Generalisation
- Sparse representations

Regularisation:

- Generalisation
- Sparse representations

Generation:

• Generative modelling

Regularisation:

- Generalisation
- Sparse representations

Generation:

• Generative modelling

Explainability:

• Disentanglement

Regularisation:

- Generalisation
- Sparse representations

Generation:

• Generative modelling

Explainability:

• Disentanglement

$$\operatorname{Attn}(\boldsymbol{Q} \boldsymbol{K} \boldsymbol{V}) = \operatorname{Softmax} \left(\frac{\boldsymbol{Q} \boldsymbol{K}^T}{\sqrt{d}} \right) \boldsymbol{V}$$

$$\operatorname{Attn}(\boldsymbol{U}\boldsymbol{Z}) = \operatorname{Softmax}\left(\frac{\boldsymbol{U}\boldsymbol{Z}^T}{\sqrt{d}}\right)\boldsymbol{Z}$$

$$\operatorname{Attn}(\boldsymbol{U}\boldsymbol{Z}) = \operatorname{Softmax}\left(\frac{\boldsymbol{U}\boldsymbol{Z}^{T}}{\sqrt{d}}\right)\boldsymbol{Z}$$

UCT Seminar

$$\operatorname{Attn}(\boldsymbol{U}\boldsymbol{Z}) = \operatorname{Softmax}\left(rac{\boldsymbol{U}\boldsymbol{Z}^T}{\sqrt{d}}
ight)\boldsymbol{Z}$$

 \bullet Prior information Z

UCT Seminar

$$\operatorname{Attn}(\boldsymbol{U}\boldsymbol{Z}) = \operatorname{Softmax}\left(rac{\boldsymbol{U}\boldsymbol{Z}^T}{\sqrt{d}}
ight)\boldsymbol{Z}$$

- Prior information \boldsymbol{Z}
- Noisy query $oldsymbol{U}$

$$\operatorname{Attn}(\boldsymbol{U}\boldsymbol{Z}) = \operatorname{Softmax}\left(rac{\boldsymbol{U}\boldsymbol{Z}^T}{\sqrt{d}}
ight)\boldsymbol{Z}$$

- Prior information $oldsymbol{Z}$
- Noisy query U
- Posterior update Attn(UZ)

$$\operatorname{Attn}(\boldsymbol{U}\boldsymbol{Z}) = \operatorname{Softmax}\left(rac{\boldsymbol{U}\boldsymbol{Z}^T}{\sqrt{d}}
ight)\boldsymbol{Z}$$

- Prior information $oldsymbol{Z}$
- Noisy query $oldsymbol{U}$
- Posterior update Attn(UZ)
- Proof of concept [Henderson and Fehr, 2023]

Theory:

• A VAE for Transformers [Henderson and Fehr, 2023]

Figure: Nonparametric Variational Information Bottleneck (NVIB)

Theory:

• A VAE for Transformers [Henderson and Fehr, 2023]

Regularisation:

• Post-training regularisation [Fehr and Henderson, 2023]

Figure: Nonparametric Variational Regularisation

Theory:

• A VAE for Transformers [Henderson and Fehr, 2023]

Regularisation:

• Post-training regularisation [Fehr and Henderson, 2023]

Explainability:

• Abstraction [Behjati et al., 2023]

Figure: Learned layer-wise abstraction

My PhD Research

Theory:

• A VAE for Transformers [Henderson and Fehr, 2023]

Regularisation:

• Post-training regularisation [Fehr and Henderson, 2023]

Explainability:

• Abstraction [Behjati et al., 2023]

Generation:

• Coming soon 2024!

Figure: Latent attention-based diffusion for text

My PhD Research

Fin

Personal Background A Brief History of NLP and Deep Learning The Attention Mechanism My PhD Research

Fin

Personal Background A Brief History of NLP and Deep Learning The Attention Mechanism My PhD Research

Thank you for your attention!

References I

Bahdanau, D., Cho, K., and Bengio, Y. (2014).

Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Behjati, M., Fehr, F. J., and Henderson, J. (2023).

Learning to abstract with nonparametric variational information bottleneck. In The 2023 Conference on Empirical Methods in Natural Language Processing,

Fehr, F. and Henderson, J. (2023).

Nonparametric variational regularisation of pretrained transformers.

Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., Huo, Y., Qiu, J., Zhang, L., Han, W., Huang, M., Jin, Q., Lan, Y., Liu, Y., Liu, Z., Lu, Z., Qiu, X., Song, R., Tang, J., rong Wen, J., Yuan, J., Zhao, W. X., and Zhu, J. (2021). Pre-trained models: Past, present and future. Al Open. 2:225–250.

Henderson, J. and Fehr, F. (2023).

A VAE for Transformers with Nonparametric Variational Information Bottleneck. In International Conference on Learning Representations.

Mikolov, T., Chen, K., Corrado, G. S., and Dean, J. (2013). Efficient estimation of word representations in vector space.

In International Conference on Learning Representations.

References II

Sutton, R. (2019).

The bitter lesson. March, 13:2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017).

Attention is all you need.

In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.