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Thesis: Nonparametric methods vs
deep learning - Allan Clark

EPFL & ldiap - Switzerland
® PhD Electrical Engineering

(2021-2025)
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Why should we care?

The “Al Revolution”
® ChatGPT (Text)
e MidJourney (Images)
¢ AlphaGo (Games)
e Siri (Audio)

® etc ...
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Why should we care?

The “Al Revolution”
e ChatGPT (Text) Attention s Al You Necd
e MidJourney (Images) .
¢ AlphaGo (Games)
e Siri (Audio)

® etc ...

What is the secret sauce?
® The attention mechanism (NLP)

® |arge-scale pretraining (Deep Learning)
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Problem: Machine Translation

Given text examples of French and English language pairs, translate the following:

Il m’a entarté = 777

N~

French
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How do we solve translation? (2000s)

Tokenization Je suis un chat. | am a cat.

® Break into smaller units (words) — Y T - T T T
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How do we solve translation? (2000s)

Tokenization

Je suis un chat. | am a cat.
® Break into smaller units (words) —— e ) )
e Build vocabulary 1 %2 %3 o4
o 1] (0] (0] [0 1] [0] [0] [0
Vectorisation ol 1] 1ol o ol "1/ 0! o
® Make into numbers (0 or 1) 8 8 (1) 2 8 8 é (1)
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How do we solve translation? (2000s)

Tokenization Jesuisunchat. | am a cat.

® Break into smaller units (words) e ) ) e ) )

1 T2 I3 T4

® Build vocabulary
Vectorisation

® Make into numbers (0 or 1)

Classification

® Multinomial logistic regression

(per word) or Naive Bayes
Naive Model
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How do we solve translation? (2000s)

Tokenization Jesuisunchat. | am a cat.

® Break into smaller units (words) e ) ) e ) )

1 T2 I3 T4

® Build vocabulary
Vectorisation

® Make into numbers (0 or 1)
Semantics?

Classification

® Multinomial logistic regression

(per word) or Naive Bayes .
Simplistic? Independence? Naive Model
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How do we solve translation? (<2014)

Models are too simple? Je suis un chat. | am a cat.
® Neural networks ;’T "3’3'2' ;: 2’: o e e

Complex (Naive) Model
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How do we solve translation? (<2014)

Models are too simple? Je suis un chat. | am a cat.

[ WG WG VG A ) | N N A )
® Neural networks

Contextualised representations?
e Word2Vec [Mikolov et al., 2013]
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How do we solve translation? (<2014)

Models are too simple? Je suis un chat. | am a cat.

[ WG WG VG A ) | N N A )
® Neural networks

Contextualised representations?
e Word2Vec [Mikolov et al., 2013]
Models assume independence?

® Recurrent Neural Networks
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How do we solve translation? (<2014)

Models are too simple? Je suis un chat. | am a cat.

[ WG WG VG A ) | N N A )
® Neural networks

Contextualised representations?
e Word2Vec [Mikolov et al., 2013]
Models assume independence?

® Recurrent Neural Networks
Long term dependencies?
Recurrence on GPUs?
Vanishing gradients?
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How do we solve translation? (2014 and beyond)

Long term dependencies?

® Attention for translation
[Bahdanau et al., 2014]

71 @ w3 zr
Je suis un ... chat.

Figure: Bidirectional LSTM with attention
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How do we solve translation? (2014 and beyond)

Long term dependencies?

e Attention for translation
[Bahdanau et al., 2014]

Recurrence?

® Transformers - only attention
[Vaswani et al., 2017]
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Figure: Transformer
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How do we solve translation? (2014 and beyond)

Long term dependencies?

® Attention for translation

[Bahdanau et al., 2014]
Recurrence?

® Transformers - only attention
[Vaswani et al., 2017]

n00000 you can't just scale up pure

a connectionist models on Internet data without ~ haha gpus go bitterrr
[ ] The bltter Iesson [S utton 2019] inductive biases and modularization and expect gpus g
' them to learn real-world knowledge and grammar from
orm, or arithnetic and logical reasoning and causal
ference-that's just memorization and superficial pattern
i

-

tiodal ok
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How do we solve translation? (2014 and beyond)

Long term dependencies?

e Attention for translation Sembsaperied S
[Bahdanau et al., 2014]

Recurrence?

ce Learning

VLMFT —— FLMo
~

Multilingual ~Ir

® Transformers - only attention

[Vaswani et al., 2017] o
DY\ pn - Whole Wi e
Scale - e N
5 VideoBERT . -
® The bitter lesson [Sutton, 2019] N ARt
S / (ingheny Bt NG (B PEGASUS
Pretraining B e e e[
VL-BERT Switch Transformer
e “Large” foundation models pmee
(2017-2021) Figure: Pretrained models [Han et al., 2021]
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How do we solve translation? (2014 and beyond)

Long term dependencies?

e Attention for translation
[Bahdanau et al., 2014]

Publicly Available

AT —mwi,f G Smucss
® Transformers - only attention @ .6 0 e =
. ™ o 2 LaMpA
[Vaswani et al., 2017] B o \ ©
Scale —0 B VAR
0 aan G wenie B o 0o G rav :':, Flan-TS
® The bitter lesson [Sutton, 2019] o IAWA AR T
e O aw o 2 ~. ./ L\: Lo
Pretraining g ™ a -y - \zm:o‘u i
. - L
e “Large” foundation models T 00 o ® @
(2017-2021)

e Large Language Models (2023)
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Takeaways:

The secret sauce:
1. The attention mechanism

2. Scaling data and model size
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Il m’a entarté = 777
NG 7 v

~~

French
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Takeaways:

The secret sauce:
1. The attention mechanism He cut me

2. Scaling data and model size

Il m’a entarté = 777
~ - N~

Ve

French

Figure: Google translate
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Takeaways:

English (UK) v Glossary
The secret sauce:
. . He put me on the spot
1. The attention mechanism
2. Scaling data and model size Alternatives:

He's got me all tarted up

Il m'a entarté — ??? He's got me in trouble
~ = N~~~

"~

He's got me in a tizzy

French

Figure: DeeplL
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Takeaways:

The secret sauce:

1. The attention mechanism ® chatcer
"Il m'a entarté” is a French expression. It translates to "He pied me" or "He threw a pie at me" in
2 : S ca | | n g d ata an d mo d el Si zZe English. The word "entarté" comes from the verb "tartiner," which means "to spread" or "to smear,"

but in this context, it refers to the act of throwing a pie at someone's face as a form of prank or

ridicule.

Il m’a entarté = 777
o ~~ _/ v
French

Figure: ChatGPT
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Takeaways:

The secret sauce:
1. The attention mechanism

2. Scaling data and model size

Il m’a entarté = 777
N - _J/ v
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UCT Seminar

A Brief History of NLP and Deep Learning 10/26




The Attention Mechanism

UCT Seminar

The Attention Mechanism 11/26




Data

Z c RNXP

e N observations, PP dimensional
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Data

Z c RNXP

e N observations, P dimensional ® M observations, P dimensional

® No particular order
¢ Common across domains e U=ZorU+#*Z
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How do we get Z and U to interact?

Z c RNXP
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How do we get Z and U to interact?

ZZTew™ ZTer™

e U=2Z: Variance(Z,Z) o U +# Z: Covariance(U, Z)
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How do we project this interaction forward?

ZZTew™ ZTer™

e U=2Z: Variance(Z,Z) o U +# Z: Covariance(U, Z)
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How do we project this interaction forward?

ZZTZ c RV*P

o U=2Z: Variance(Z,Z)
® Project by Z

UCT Seminar
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e U # Z: Covariance(U, Z)
® Project by Z
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What are the problems with this?

ZZTZ c RV<P ZTZ c RMXP
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What are the problems with this?

ZZTZ c RV<P ZTZ c RMXP

e Strictly positive multiplications? ® Single interaction value?

e Normalisations and scaling? ® Quadratic?
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The attention mechanism

Q K V K V
b7

$
Z Z

Figure: Self attention Figure: Cross attention

° WQ, WK, WV c RPXd
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The attention mechanism

e Cross attention KT
€ RN
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The attention mechanism

® Cross attention

® Scaling
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The attention mechanism

° Sca“ng SOftmaX

® Cross attention (
® Normalisation

T
)
d
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The attention mechanism

Cross attention

T
Scaling Softmax( ?{i{ )V € RMxd

Normalisation

Projection
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Why is attention so cool?

Advantages:
® Simple layer
® No particular order

® Unbounded inputs
® Probabilistic interpretation Softmax( KT)V e RV

o e
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Why is attention so cool?

Advantages:

® Simple layer

® No particular order

® Unbounded inputs

® Probabilistic interpretation Softmax( _IfT)V c RMxd
Problems solved:

e Strictly positive multiplications? v H

® Normalisations and scaling? v’

® Single interaction value? v/

® Quadratic? X

UCT Seminar

The Attention Mechanism 18/26




My PhD Research

UCT Seminar

My PhD Research 19/26




Intuition

Attention mechanism: KT
. Softma,x(— )VGR”
® No particular order Vd

® Unbounded inputs H
® Probabilistic interpretation
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Intuition

Attention mechanism:
® No particular order
® Unbounded inputs H
® Probabilistic interpretation

Nonparametric distribitions
® Exchangable set

® Theoretically infinite

® Mixture of distributions
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Nonparametric latent variable modelling

Regularisation:
® Generalisation

® Sparse representations
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® Sparse representations
Generation:

® Generative modelling
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Regularisation:
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® Sparse representations
Generation:

® Generative modelling
Explainability:

® Disentanglement

UCT Seminar

My PhD Research 21/26




The denoising attention mechanism

KT
Attn(QKV) = Softmax(ﬁ )V
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The denoising attention mechanism

A Z z'
ttn ( )—Softmax(ﬁ )Z
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The denoising attention mechanism

A Z z"
ttn ( = Softmax( 7 )Z

® Prior information Z
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The denoising attention mechanism

A Z z"
ttn ( = Softmax( 7 )Z

® Prior information Z

® Noisy query U
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The denoising attention mechanism

® Prior information Z o
® Noisy query U
¢ Posterior update Attn(U Z)
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The denoising attention mechanism

Attn(U Z z"
ttn ( = Softmax( 7 )Z ‘ ‘

Prior information Z

® Noisy query U
¢ Posterior update Attn(U Z)

Proof of concept [Henderson and Fehr, 2023]
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Current research

Theory:
e A VAE for Transformers DP prior: | DP:NVIB e
[Henderson and Fehr, 2023] mreren® i g, PO 4

o
o,

%%
o.
& %%
. 2.
£ 232
m

S >
set of pseudo-observations query denoising

Transformer Transformer
encoder decoder

Denoising is all you need Denoising is all you need

Figure: Nonparametric Variational Information
Bottleneck (NVIB)
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Current research

Theory: T
® A VAE for Transformers ke Denaising )
[Henderson and Fehr, 2023] Attention

Regularisation:
Regularised Equivalent
\NVIB Embedding NVIB Embedd\ng)

~_ 7

® Post-training regularisation

[Fehr and Henderson, 2023] TR o - ~
MHA
projection
& @ 17)
Transformer T Empirical Transformer
Embedding % A Prior Embedding )

Figure: Nonparametric Variational Regularisation
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Current research

Theory:

e A VAE for Transformers
[Henderson and Fehr, 2023]

Regularisation:

Add & Norm
Feed
Forward

Add & Norm

® Post-training regularisation
[Fehr and Henderson, 2023]

Denoising
Explainability:
® Abstraction E
[BehJatl et al-’ 2023] Embedded . ver IRREREY

Inputs ol

Figure: Learned layer-wise abstraction
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Current research

Theory:

e A VAE for Transformers
[Henderson and Fehr, 2023]

Regularisation:

PolXe-1]xe)

® Post-training regularisation
[Fehr and Henderson, 2023]

Explainability:
e Abstraction qlxy|xyq)
[Behjati et al,, 2023] ————— Forward Diffusion
------ - Reverse Diffusion
Generation:

. Fi ; ion- iffusi
e Coming soon 2024! igure: Latent attention-based diffusion for text

UCT Seminar

My PhD Research 23/26




Fin

Personal Background

A Brief History of NLP and Deep Learning
The Attention Mechanism

My PhD Research

My PhD Research 24/26

UCT Seminar




Fin

Personal Background

A Brief History of NLP and Deep Learning
The Attention Mechanism

My PhD Research

Thank you for your attention!
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