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Who is this guy?

UCT

• BBusSci: Analytics (2015-2018)
Thesis: Natural Language Processing
- Stefan Britz

• MSc: Statistics (2019-2020)
Thesis: Nonparametric methods vs
deep learning - Allan Clark

EPFL & Idiap - Switzerland

• PhD Electrical Engineering
(2021-2025)
Nonparametric methods for NLP
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Why should we care?

The “AI Revolution”

• ChatGPT (Text)

• MidJourney (Images)

• AlphaGo (Games)

• Siri (Audio)

• etc ...

What is the secret sauce?

• The attention mechanism (NLP)

• Large-scale pretraining (Deep Learning)
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Problem: Machine Translation

Given text examples of French and English language pairs, translate the following:

Il m’a entarté︸ ︷︷ ︸
French

= ???︸︷︷︸
English
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How do we solve translation? (2000s)

Tokenization

• Break into smaller units (words)

• Build vocabulary

Vectorisation

• Make into numbers (0 or 1)

Semantics?

Classification

• Multinomial logistic regression
(per word) or Naive Bayes

Simplistic? Independence?

I   am   a   cat.Je suis un chat.
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How do we solve translation? (<2014)

Models are too simple?

• Neural networks

Contextualised representations?

• Word2Vec [Mikolov et al., 2013]

Models assume independence?

• Recurrent Neural Networks
Long term dependencies?
Recurrence on GPUs?
Vanishing gradients?

I   am   a   cat.Je suis un chat.

Complex (Naive) Model
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How do we solve translation? (2014 and beyond)

Long term dependencies?

• Attention for translation
[Bahdanau et al., 2014]

Recurrence?

• Transformers - only attention
[Vaswani et al., 2017]

Scale

• The bitter lesson [Sutton, 2019]

Pretraining

• “Large” foundation models
(2017-2021)

• Large Language Models (2023)

Je   suis   un   ...  chat.

...       a        cat.

Figure: Bidirectional LSTM with attention
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Takeaways:

The secret sauce:

1. The attention mechanism

2. Scaling data and model size

Il m’a entarté︸ ︷︷ ︸
French

= ???︸︷︷︸
English
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Data

• N observations, P dimensional

• No particular order

• Common across domains

• M observations, P dimensional

• No particular order

• U = Z or U ̸= Z
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How do we get Z and U to interact?

• U = Z: V ariance(Z,Z)

• a

• a

• U ̸= Z: Covariance(U ,Z)

• a

• a
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How do we project this interaction forward?

• U = Z: V ariance(Z,Z)

• Project by Z

• a

• U ̸= Z: Covariance(U ,Z)

• Project by Z

• a
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What are the problems with this?

• Strictly positive multiplications?

• Normalisations and scaling?

• a

• Single interaction value?

• Quadratic?

• a
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The attention mechanism

Figure: Self attention

• a

• a

• a

Figure: Cross attention

• WQ, WK , W V ∈ RP×d

• a

• a
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The attention mechanism

• Cross attention

• Scaling

• Normalisation

• Projection

UCT Seminar The Attention Mechanism 17/26



The attention mechanism

• Cross attention

• Scaling

• Normalisation

• Projection

UCT Seminar The Attention Mechanism 17/26



The attention mechanism

• Cross attention

• Scaling

• Normalisation

• Projection

UCT Seminar The Attention Mechanism 17/26



The attention mechanism

• Cross attention

• Scaling

• Normalisation

• Projection

UCT Seminar The Attention Mechanism 17/26



Why is attention so cool?

Advantages:

• Simple layer

• No particular order

• Unbounded inputs

• Probabilistic interpretation

Problems solved:

• Strictly positive multiplications? ✓

• Normalisations and scaling? ✓

• Single interaction value? ✓

• Quadratic? ✗
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Intuition

Attention mechanism:

• No particular order

• Unbounded inputs

• Probabilistic interpretation

Nonparametric distribitions

• Exchangable set

• Theoretically infinite

• Mixture of distributions
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Nonparametric latent variable modelling

Regularisation:

• Generalisation

• Sparse representations

Generation:

• Generative modelling

Explainability:

• Disentanglement
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The denoising attention mechanism

• Prior information Z

• Noisy query U

• Posterior update Attn(UZ)

• Proof of concept [Henderson and Fehr, 2023]
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Current research

Theory:

• A VAE for Transformers
[Henderson and Fehr, 2023]

Regularisation:

• Post-training regularisation
[Fehr and Henderson, 2023]

Explainability:

• Abstraction
[Behjati et al., 2023]

Generation:

• Coming soon 2024!

Figure: Nonparametric Variational Information
Bottleneck (NVIB)
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Add & Norm

Feed
Forward

Add & Norm

Denoising
MHA

NVIB

Transformer
Embedding

Transformer
Embedding

Empirical
Prior

Regularised
NVIB Embedding

Equivalent
NVIB Embedding

NVIB
projection

Denoising
Multi-Head
 Attention

+

Figure: Nonparametric Variational Regularisation
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Figure: Latent attention-based diffusion for text
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